Math 332 * Victor Matveev
Final Exam preparation list

1) Complex numbers:

1. Cartesian representation, addition/subtraction, division (1/222 /|z]*), complex conjugation.
2. Complex exponential and Euler equation
3. Polar representation of complex numbers: branches of argument
z=|z|exp{iargz } =|z| exp{i Argz +i2nk }
4. Properties of |z| and z, triangle inequalities
122, =12 112, 5 12/ 2 =12 1/ 2 |5 |2|=] 2]
Iz =1z | <|z t2,| <z |+] 2|

5. Complex roots
6. Sets in the plane (review lines and circles, z =zo+ r exp(i ¢) )

2) Functions of complex variable:
1. Function as a Mapping
Limits and Continuity
3. Analyticity: f(z) is analytic at zo if its derivative exists there, as defined by a 2D limit
+Az)— -
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Cauchy-Riemann equations hold if the function (u + i v) is analytic : ux=—vy, uy=—vx
5. Harmonic functions and harmonic conjugates

3) Elementary functions
1. Polynomials and Rational functions: fundamental theorem of algebra, polynomial deflation, zeros, poles,
partial fractions

2. Complex exponential, trigonometric, hyperbolic functions
exp z = exp(x)exp(i y) = exp(x) (cos y + i sin y)
sin z = sin xcosh y +icos xsinh y

cosz =cosxcosh y—isinxsinh y

3. Logarithmic function: branches and branch cuts

log z=1log{ |z| exp(iargz) } =Log|z| +iargz=Log|z| +i {Arg z + 2nk}
4. Complex powers, inverse trig and inverse hyperbolic functions

z"=exp(wlogz)

sin"!(z) = =i log {i z+ (1 - z)"?} (Derive, don’t memorize)

cos }(z) =—ilog { z+ (z>-1)""?} (Derive, don’t memorize)

tan '(z)= i/2log { (1-iz) /(1 +iz)} (Derive, don’t memorize)



4) Contour integral:
1. Smooth arcs, simple closed curves and their parametrization; a contour is a sequence of smooth curves

2. Contour integral calculation methods:

i. Limit of a Riemann sum: lim Z f(z)Az,

max|Az; |»0
ii. Contour parameterization: | f{z) dz = f Az(2)) z'(¢) dt
iii. Antiderivative (| f{z) dz = F(zend) — F(zstart) )
iv. Changing contour of integration (see Cauchy integral theorem below)
v. Some loop integrals equal zero (see Cauchy integral theorem below)

) ) ) i dz 0,n=1
3. Important integral (derive using z = R exp(i t) ): —_— =

|z—z9|=R (Z -2z, )n 2zi,n=1

4. Calculating upper bounds on integral modulus: <max| f(z)|l(y)=M-L
zcy

j f(2)dz

5. Theorem: if f{(z) is continuous in domain D, the following statements are equivalent:

@IFQ)|F @)= b)) § f(2dz=0 () [ f(2)dz= | f(z)dz
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6. Cauchy integral theorem:
If f(z) is analytic in a simply-connected domain D, the above three properties (a,b,c) hold.

e Corollary 1: if a function is analytic between two simple contours with same endpoints or between
two simple closed curves, the two contour integrals are equal.

e Corollary 1*: if there is a continuous deformation of one contour into another (without crossing non-
analyticities, with endpoints fixed), the two integrals are equal.
7. Corollary of above two theorems: Loop integral is zero if either of the following is true:
(1) f(z) is analytic inside and on the loop

(2) f(z) has a continuous anti-derivative on the loop (Example: 1/z%)

8. Cauchy Integral Formula:

If f(z) is analytic in D and zo is inside simple closed contour y lying in D, then | f(z,) = 2—4) f(2)dz
i z—z,

“ .

dz
(n) z _ f(Z)
/()= ngﬁ o
n! max | f(z)|
Corollary: bounds on analytic functions: ‘ " (z, )‘ —'Q;n—

Corollary: analytic functions only reach their max modulus on the boundary of a domain. Functions
analytic on unbounded domains are unbounded there.



5) Series representation of analytic functions

1. If a function is analytic at zo, it has a Taylor series representation in a neighborhood of zo:

“(z)
f(z2) = Zc (z=z,), where ¢ =2 n!z 2qu (é{(i)o)il,

T.S. converges in |z-zo|<R, converges uniformly in |z-zo| < R’< R, and diverges in |z-zo| > R

contour C contains z,

2. If a function is analytic in r<|z-zo|<R, it has a Laurent series representation there:

f(z)—Zc(z z,)" —ZCn(z z,)" +ZCH(Z z,)"

¢ f()dg
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The first term (positive-power series) converges in |z-zo|<R, while the second term
(principal part) converges in |z-zo|>r. Laurent series diverges outside of the ring r<|z-zo|<R

where C is inside the ring and contains z,,

3. Convergence radius: R = }Lngo |¢, /¢, | (from ratio test) or R=1/ }1_1)2 sup{/| ¢; | (from root test)

4. Use term-by-term operations to derive Taylor and Laurent series, avoiding explicit differentiation or
integration. Use a simple shift to expand around non-zero zo.

0

. . 1 " = z"
5. Remember important series :zz, exp z ZF Log(1+z)= Z( 1) —

-z n=0 n=0

6. If a function has an isolated singularity, it has a Laurent series expansion centered at that point. Isolated
singularities are:

(1) Removable singularity: ¢, =0 for all » > 0 (Laurent series = Taylor series)

(2) Pole of order m: ¢, =0 for all n > m . Function modulus is unbounded near the pole.

(3) Essential Singularity: infinitely many non-zero ¢_, (where n > 0) . Function assumes every
possible value with possibly one exception infinitely many times in any neighborhood of E.S.

7. A function has no series representation in any neighborhood of non-isolated singularity such as a branch
point, branch cut, or an accumulation point (e.g. 1/sin(1/z) at zo=0)

8. Alternative definitions of a zero: zo is a zero of order m of f{z) if the function is analytic there and:
(1) f"(z,)=0 forn<m,but " (z,)#0

(2) f(z2)=(z—2z,)" g(z), where g(z,) # 0 and g(z) is analytic at zo
() f(2)=0+0+..+0+c,(z—2)" +c,., (z=2)"" +¢,,,(z—z,)"" +..., wherec, #0
9. Alternative definitions of a pole: zo is a pole of order m of f{z) if:

(1) 1/f(z) has a zero of order m at zo

) f(z)= = 8z )) where g(z,) # 0 and g(z) is analytic at zo
C—m C—m+l
3) f(2)= oz ) + P +..., wherec  #0



6) Cauchy’s Residue Theorem and applications:

1. Term-by-term integration of a Laurent series gives:

CI) f(z)dz =2ri a_,, where C contains a single isolated singularity z,,
C

a1 is called the residue of function f{z) at zo

2. Therefore, if f(z) is analytic inside C except for the isolated singularities zi, then:

Sﬁf(z) dz = Zﬂizn:Res(f; z))

3. Residue calculation methods:
1) Res(f; zo)=a-1 (definition; works for all isolated singularities)

2) Pole of order m: just count the powers, and you get the Cauchy Integral Formula:

Res| 8@ . \_ e 1 d"'g(z)|  _ 1 d" (f(2)z-z2,)")
(z=z)" ) " (m=1) dz™ (m—1)! dz""!

Z‘)ZO

3) Simple pole: f(z)=p(z)/q(z), where p(z0) #0, g(z0) =0: 0
(). j_ p(z,)
()"

Res =—
q'(z,)

4. Special integrals taken using residue method:

2) Improper integrals over rational functions from —oo to +oo : complete the integration contour in the top

or bottom half-plane

3) Improper integrals involving trig functions — replace trig functions with complex exponentials;
complete the integral in the top or bottom half-plane; use the Jordan’s Lemma.

4) Poles on the real axis — use indented contour. Integral over half a circle surrounding a simple pole is

equal 2mi times half the residue, in the limit of circle radius approaching zero

Jordan’s Lemma:

M,

CﬁR(z)e"mzdz < where M, = max | R(z) |, and C, is a semi-circle in the top half-plane
Cp zc P



Properties of functions f(z) analytic in domain D:

1) f(z) can be expressed as a function of z = x+i y only

2) df/dz exists in D (definition of analyticity)

3) All higher-order derivatives also exist in D (given by the C.LF.)

4) f(z) has a Taylor series representation in a neighborhood of any point in D

5) Cauchy-Riemann identities hold (ux = vy, uy = —vx)

6) u=Re(f) and v=Im(f) are harmonic in D

7) f(z) is uniquely determined by its values over any single curve or open set in D.
[ C.LF. tells us how to determine f{z) from its values along a loop around z]

8) fl(z) at the center of any circle in D equals it average over the entire circle

9) |f(z)| can only reach its maximum on the boundary of D

10) If D is unbounded, then f{z) is unbounded

11)If D is simply connected, then Cauchy Integral Theorem applies:
a) All loop integrals of f{z) in D are zero, and all open contour integrals are path independent

b) f(z) has an antiderivative in D



