
 
Math 332 * Victor Matveev 
Final Exam preparation list 

  
1) Complex numbers: 

1. Cartesian representation, addition/subtraction, division (1/z= z /|z|2), complex conjugation. 

2. Complex exponential and Euler equation 

3. Polar representation of complex numbers: branches of argument 

z = |z| exp{ i arg z } = |z| exp{ i Arg z + i 2k } 

4. Properties of |z| and z , triangle inequalities  
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5. Complex roots 

6. Sets in the plane (review lines and circles, z = z0 + r exp(i t) ) 

 

2) Functions of complex variable: 

1. Function as a Mapping 

2. Limits and Continuity 

3. Analyticity: f(z) is analytic at z0 if its derivative exists there, as defined by a 2D limit 
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4. Cauchy-Riemann equations hold if the function (u + i v) is analytic : ux=–vy, uy=–vx 

5. Harmonic functions and harmonic conjugates 

6. Solving Laplace’s equation with Dirichlet boundary conditions 

 

3) Elementary functions 

1. Polynomials and Rational functions: fundamental theorem of algebra, polynomial deflation, zeros, poles, 
partial fractions 

2. Complex exponential, trigonometric, hyperbolic functions 

exp z = exp(x)exp(i y) = exp(x) (cos y + i sin y) 
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3. Logarithmic function: branches and branch cuts 

log z = log{ |z| exp( i arg z) } = Log |z| + i arg z = Log |z| + i {Arg z + 2k} 

4. Complex powers, inverse trig and inverse hyperbolic functions 

zw = exp( w log z ) 

sin–1(z) = –i log {i z + (1 - z2)1/2}  (Derive, don’t memorize) 

cos–1(z) = –i log { z + (z2–1)1/2}  (Derive, don’t memorize) 

tan–1(z) =  i/2 log { (1– i z) / (1 + i z) }  (Derive, don’t memorize) 

 



4) Contour integral:  
 

1. Smooth arcs, simple closed curves and their parametrization; a contour is a sequence of smooth curves 
 

2. Contour integral calculation methods: 

i. Limit of a Riemann sum: lim
max|zk |0

f (zk
* )zk

k1

N

  

ii. Contour parameterization:  f(z) dz =  f(z(t)) z’(t) dt 
iii. Antiderivative ( f(z) dz = F(zend) – F(zstart) ) 
iv. Changing contour of integration (see Cauchy integral theorem below) 
v. Some loop integrals equal zero (see Cauchy integral theorem below) 

 

3. Important integral (derive using z = R exp(i t) ): 
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5. Theorem: if f(z) is continuous in domain D, the following statements are equivalent: 
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6. Cauchy integral theorem:  

If f(z) is analytic in a simply-connected domain D, the above three properties (a,b,c) hold. 

 Corollary 1: if a function is analytic between two simple contours with same endpoints or between 
two simple closed curves, the two contour integrals are equal. 

 Corollary 1*: if there is a continuous deformation of one contour into another (without crossing non-
analyticities, with endpoints fixed), the two integrals are equal. 

 
7. Corollary of above two theorems: Loop integral is zero if either of the following is true: 

(1) f(z) is analytic inside and on the loop  
(2) f(z) has a continuous anti-derivative on the loop (Example: 1/z2) 

 
8. Cauchy Integral Formula: 

If f(z) is analytic in D and z0 is inside simple closed contour   lying in D, then 0
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Corollary: bounds on analytic functions: f (n) (z0 ) 
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Corollary: analytic functions only reach their max modulus on the boundary of a domain. Functions 
analytic on unbounded domains are unbounded there. 



5) Series representation of analytic functions 

1. If a function is analytic at zo, it has a Taylor series representation in a neighborhood of zo: 
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        T.S. converges in |z-z0|<R, converges uniformly in |z-z0|  R’< R, and diverges in |z-z0| > R 
 

2. If a function is analytic in r<|z-z0|<R, it has a Laurent series representation there: 
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  The first term (positive-power series) converges in |z-z0|<R, while the second term 
(principal part) converges in |z-z0|>r. Laurent series diverges outside of the ring r<|z-z0|<R 

3. Convergence radius: 1lim | / |j j
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4. Use term-by-term operations to derive Taylor and Laurent series, avoiding explicit differentiation or 
integration. Use a simple shift to expand around non-zero z0. 

5. Remember important series 
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6. If a function has an isolated singularity, it has a Laurent series expansion centered at that point. Isolated 
singularities are: 

(1) Removable singularity: 0  for all 0nc n    (Laurent series = Taylor series) 

(2) Pole of order m: 0  for all nc n m   . Function modulus is unbounded near the pole. 

(3) Essential Singularity: infinitely many non-zero c  (where 0)n n  . Function assumes every 

possible value with possibly one exception infinitely many times in any neighborhood of E.S. 
 

7. A function has no series representation in any neighborhood of non-isolated singularity such as a branch 
point, branch cut, or an accumulation point (e.g. 1/sin(1/z) at z0=0) 

 
8. Alternative definitions of a zero: zo is a zero of order m of f(z) if the function is analytic there and: 
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9. Alternative definitions of a pole: zo is a pole of order m of f(z) if: 

(1) 1/f(z) has a zero of order m at zo  
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6) Cauchy’s Residue Theorem and applications: 
 
1. Term-by-term integration of a Laurent series gives: 

1 0( ) 2 , where C contains a single isolated singularity 
C
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a-1 is called the residue of function f(z) at z0 

 
2. Therefore, if f(z) is analytic inside C except for the isolated singularities zi, then: 
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3. Residue calculation methods: 
 

1) Res(f; z0)=a-1 (definition; works for all isolated singularities) 
 

2) Pole of order m: just count the powers, and you get the Cauchy Integral Formula: 
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3) Simple pole: f(z)=p(z)/q(z), where p(z0) 0, q(z0) =0: 
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4. Special integrals taken using residue method: 
 

1) Trigonometric integrals over a whole period: make a substitution  z = exp(i t) 

2) Improper integrals over rational functions from – to + : complete the integration contour in the top 
or bottom half-plane 

3) Improper integrals involving trig functions – replace trig functions with complex exponentials; 
complete the integral in the top or bottom half-plane; use the Jordan’s Lemma. 

4) Poles on the real axis – use indented contour. Integral over half a circle surrounding a simple pole is 
equal 2πi times half the residue, in the limit of circle radius approaching zero 

5) Integrals involving multi-valued functions – integrate over the branch cut 

6) Improper integrals of rational functions from 0 to  which are neither even nor odd – multiply 
integrand by zero branch of log z; integrate over the branch cut. 

 

Jordan’s Lemma: 
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Properties of functions f(z) analytic in domain D: 

 

1) f(z) can be expressed as a function of z = x+i y only 

2) df/dz exists in D (definition of analyticity) 

3) All higher-order derivatives also exist in D (given by the C.I.F.) 

4) f(z) has a Taylor series representation in a neighborhood of any point in D 

5) Cauchy-Riemann identities hold (ux = vy, uy = –vx) 

6) u=Re(f) and v=Im(f) are harmonic in D 

7) f(z) is uniquely determined by its values over any single curve or open set in D.  

     [ C.I.F. tells us how to determine f(z) from its values along a loop around z] 

8) f(z) at the center of any circle in D equals it average over the entire circle 

9) |f(z)| can only reach its maximum on the boundary of D  

10) If D is unbounded, then f(z) is unbounded 

11) If D is simply connected, then Cauchy Integral Theorem applies: 

a) All loop integrals of f(z) in D are zero, and all open contour integrals are path independent 

      b) f(z) has an antiderivative in D 


